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A computer program which generates all Feynman graphs for given initial and final 
states and an interaction order in QED (Quantum Electra-Dynamics) is described. The 
program is based on a topological analysis and has two features: short execution time 
owing to minimization of the number of graphs to be constructed, and elimination of 
topologically equivalent graphs as well as physically unused ones. Many elimination 
tests are applied to each graph after its construction without referring to other graphs. 
Hence, even a large number of graphs can be generated within reasonable time and 
memory size. Applications of the program to several interesting processes in physics are 
briefly reported. 

1. INTR~DUOTI~N 

A good agreement of QED predictions to date with experimental results 
encourages further calculations in this field. The higher order calculations are, 
however, very tedious to do and many computer programs have been written 
to make them as automatic as possible (for example, SCHOONSCHIP by Veltman, 
REDUCE by Hearn, and ASHMEDAI by Levine [I]). Furthermore, automatic 
generation of Feynman graphs also has been attempted, and the descriptions of 
three such programs have been published so far. One, by Campbell and Hearn, 
relies on Wick’s contraction theorem; the second, by Calmet and Perrottet, is 
based on a generating functional formalism. The third is by Perrottet and uses a 
combinatorial analysis [2]. 

An important point in generating graphs is not only the construction of all 
necessary graphs but also the elimination of topologically equivalent graphs, due 
to the fact that many more graphs than necessary are produced by ordinary graph 
construction methods. By relabeling an n-point graph, we can produce (n! - 1) 
graphs which are topologically identical to the original one; in the worst case, 
unnecessary graphs are (n ! - 1) times as numerous as the necessary ones. Further- 
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more, there are many graphs which are not used in physics. The programs 
mentioned above are very useful, but not entirely satisfactory, in that the elimination 
of unnecessary graphs is insufficiently performed in Campbell and Hearn, and the 
comparison method in Calmet and Perrottet requires excessive memory for storing 
graphs for comparison. This memory requirement will become very severe when 
many, say a thousand topologically different graphs, are generated. 

One way to avoid this difficulty is to check the graph’s topology and determine, 
without referring to other graphs, whether or not the graph should be eliminated. 
One may wonder if all unnecessary graphs can be eliminated in this approach. 
As we will see later, this is in fact the case for the QED interaction. Moreover, 
this approach will save computing time as well; the computer processing time in 
our approach is roughly proportional to ngraph , the number of graphs to be con- 
structed in memory. On the other hand, it is roughly proportional to ngraph.Ngraph 
in the comparison method, where N sraph is the number of graphs to be output. 
When applying a program constructed along this line to actual problems, the 
author found it very powerful. It has generated about 12,000 graphs within the 
bounds of reasonable time and standard memory size. The program has been 
written in LISP, because its data structure is considered to be one of the best 
suitable for handling graphs. However, knowledge of LISP is not required for 
reading this paper. 

Section 2 is devoted to terminology. In Section 3 we describe a graph construc- 
tion algorithm. We will restrict ourselves to treating only the QED interaction, 
because in other cases the graph elimination algorithm will be considerably more 
complicated. This restriction will, however, enable us to make a graph construction 
algorithm which is not only efficient but also effective for classifying the generated 
graphs. A graph elimination algorithm is explained in Section 4. Results of appli- 
cations of our program to actual problems are reported in Section 5. Applicability 
of our idea to more complicated type of interactions will also be discussed there 
briefly. 

2. PRELIMINARY 

2.1. DeJnitions 

We first define some terms for QED Feynman graphs, some of which have 
meanings different from those in conventional graph theory. 

(1) Vertex and order. A vertex (or point) is a node of a graph. The order of 
a graph is the number of all vertices in the graph. 

(2) Line, initial andJina1 states. A line is a branch (or edge) of a graph. A 
Feynman graph is defined with the concept of an initial and a final state, which are 
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the states at - 03 and + co, respectively. Each end of a line may either start at 
an initial state, end at a final state, or otherwise be incident to a vertex. In the 
Feynman graph considered here, both ends of a line must not be incident to the 
same vertex. 

(3) El-line and ph-line. There are two kinds of lines, an electron line and a 
photon line (an e&line and a ph-line), drawn by a solid line and a dotted line, 
respective1y.l An el-line has a direction, along which an electron (or negative 
charge) flows. At each vertex, three lines are adjoined: one ph-line and two el-lines, 
one arriving and the other leaving, conserving the charge current. 

(4) External and internal lines. A line is external if it joins to one or both of 
an initial and a final state, otherwise it is internal. 

(5) Chain and loop. These terms are applied only to el-lines. A chain is a 
(nonempty) set of all el-lines which are adjoined to each other, one by one. A 
chain has a direction, since each el-line has a direction. A loop is a special chain 
which starts and ends at the same vertex. 

(6) Skeleton of a graph is a subgraph containing all chains but no ph-lines in 
the graph. 

(7) Vertex IabeZing number (hereafter abbreviated as vln). A vln is a label of 
a vertex. All vertices in a graph are distinctively labeled with numbers 1,2,..., iV 
(= the order of the graph). Vertices in a chain are numbered in ascending order 
along its direction. 

(8) Base of a chain is the vertex having the smallest vln in the chain. 
(9) Length from vertex A to vertex B in a chain is the number of el-lines 

counted from A to B along the direction of the chain. 
(10) Height of a vertex in a chain is the length from the base of the chain to 

the vertex. 
(11) Ph-neighbor. A vertex is the ph-neighbor of the other if both are joined 

to each other by an internal ph-line. 
(12) Equivalent. Chains in a graph (or vertices in a loop) are equivalent 

w.r.t. a given criterion if they have topologically the same properties w.r.t. the 
criterion. Two corresponding vertices in two equivalent chains are also said to be 
equivalent. This term (as well as “periodic” and “period”; see below) has crucial 
importance in our discussion. It should be noted that the precise meaning of 
“equivalence” changes as the criterion to be used changes (cf. Fig. 1). 

(13) Periodic loop, period, quasi-base, and quasi-height. Suppose that all 
vertices of a loop are cyclically relabled (cf. Fig. 2). If the relabeled loop has 

1 We do not consider muons in this paper. Graphs including muon lines will be easily obtained 
from electron-photon graphs. 
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topologically the same vln configuration as the original one w.r.t. a given criterion, 
then the loop is periodic w.r.t. the criterion. Some vertices in a periodic loop are 
therefore mutually equivalent w.r.t. the same criterion. The period is the nonzero 
minimum length between two such equivalent vertices. A vertex of a loop equiva- 
lent to the base of the loop is called a quasi-base. The quasi-height of a vertex in a 
periodic loop is its height, modulo the period of the loop; i.e., the length measured 
from the “nearest” quasi-base or the base. 

FIG. 1. The tops and the bottoms of these graphs are in the final and the initial states, respec- 
tively. This convention will always be used in this paper. The chains (5 6 7 8) and (9 10 11 12) 
are not equivalent if they are observed in combination with all other chains (1.h.s. graph), but 
equivalent when only their inner-chain topologies are observed (r.h.s. subgraphs). 

3 .-- 

FIG. 2. The loop (3 4 5 6 7 8) is nonperiodic when observed in the whole graph, but periodic 
with period 3 when observed separately; a relabeled loop (r.h.s. subgraph, which is obtained 
from the loop in the 1.h.s. graph by the cyclic permutation (3 --+ 6, 4 -+ 7, 5 -+ 8, 6 + 3, 7 -+ 4, 
8 + 5) on their vln’s) is equivalent to the original loop. In this case,vertices 4 and 7 have the same 
quasi-height 1 though they have heights 1 and 4, respectively. 

(14) Preferred order of vertices (or chains). Vertices (or chains) in a graph 
can be ordered. Vertices are in the preferred order if their vln’s are in ascending 
order. Chains are in the preferred order if the vln’s of their bases are in ascending 
order. 

(15) Block. Any set of chains in a graph can be separated into subsets, 
or blocks, such that each block constitutes a connected subgraph and any two 
chains belonging to different blocks are disconnected. 
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(16) Base, length, height, equivalent, periodic, period, quasi-base, quasi-height, 
and preferred order are also defined for blocks. The base of a block is the vertex 
having the smallest vln in it. Equivalent blocks are similarly defined as equivalent 
chains. Blocks in a graph are in the preferred order if the vln’s of their bases are in 
ascending order. Other terms will be explained later, when necessary. 

(17) e-set and p-set. These are abbreviations for “set of equivalent chains” 
or “equivalent blocks,” and for “periodic loops” or “periodic blocks,” respectively. 
A graph may contain many e-sets. 

2.2. Brief Sketch of the Program 

For given initial and final states and an interaction order, a QED Feynman graph 
is uniquely determined when its chain structure (i.e., its skeleton) and the connec- 
tions of all its ph-lines are determined. In our program, a chain and a ph-line 
are represented by an ordered set of vln’s and a pair of vln’s (or a pair of a vln 
and a number representing an initial or a final ph-line), respectively. A graph is 
represented by these sets of numbers. It should be noted that some graphs which 
are distinctively represented may be topologically identical. 

:--foI each possible case do------------------------------------..-.-. 

procedure A: skeleton construction 

1 
,---for each possible case do--------------------------------.-: - 

procedure B: external ph-line connection 

1 c--for each possible case do ______..___--- ---.---. : I- ; : 

procedure C: internal ph-line connection 

1 
procedure D: elimination tests 

L____________._.__._~.~.....~~~ .._______-.- _ - - - - - . . - .  I  *  :  

I  ,  

L. .___._. _ ._..._..........__.______________ _ _..._._..____._....._. - ,  

L _________.._._. _ .  .  .  .  .  . ._ . . ._ ._____. . ._ . . . . . . . . . - . . . - - . - . - . . - - - . - - - - . - . - - - . . . . .  * 

FIG. 3. Simplified flow diagram of the program. 

Although details are given later, we outline the function of our program here 
using Fig. 3, a simplified flow diagram. Procedure A constructs a skeleton of a 
graph to be constructed. Only all topologically different skeletons are constructed. 
We label vertices in each skeleton so that they can be ordered uniquely (a preferred 
order of vertices). Next, procedure B attempts all possible connections of external 
ph-lines, if any, to the skeleton. Provisions are made so that only a specific 

581/22/2-5 
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connection among all topologically equivalent ones is kept. Procedure C then 
attempts all pairings, by internal ph-lines, of ph-line vacant vertices in the 
subgraph. The number of pairings made by our program is (2m - 1) ! ! for 2m ph-line 
vacant vertices, which is reasonably small, although not all graphs constructed 
are topologically different. In procedure D all unnecessary graphs are eliminated. 

It may be seen from Fig. 3 that no more than one graph is stored simultaneously 
in memory. Furthermore, the program proceeds so that the graphs having the same 
skeleton and external ph-line connections will be sequentially generated, and that 
the skeleton and the external ph-line connections will be systematically changed. 

3. GRAPH CONSTRUCTION ALGORITHM 

We restrict ourselves to constructing only graphs which contain no loops with 
odd number of vertices. (In our actual program, this restriction is overridden 
if “OFFFURRY” is input as a command.) Figure 4 is a flow diagram showing 
all steps of the graph construction algorithm, where we have used solid and dotted 
lines to describe, as indicated, the nested flow structure, such as shown in Fig. 3. 

3.1. Skeleton Construction 

Let the order of a graph be N and the numbers of electrons, positrons and 
photons in an initial state be nel, rips , and nph , and in a final state be n& , nb, , 
and nkh , respectively. These numbers are given to the program as input data, 
and they must satisfy the following conditions (to be checked by a function 
“jobinput”). 

N3 1, nel , etc., 30, (1) 

N 3 nph + nbh , (2) 

N 3 be1 + rips + &l + &d/2, (3) 

nel + 4x4 = rips + nL1 , (4) 

N - (nph + n&) = an even integer. (5) 

If (2) and/or (3) are not satisfied, some particles go through the graph without 
interactions. Condition (4) represents the charge conservation. Condition (5) 
says that the number of vertices not being connected by external ph-lines must be 
even, since each internal ph-line joins to two vertices. 
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FIG. 4. Graph construction steps. Each step is accompanied with a set of numbers, which is 
advanced by one degree when we enter that step. If we succeed in producing a new set of numbers, 
we proceed to the next step (solid line). If all possible sets are exhausted, we go back to the preced- 
ing step (dotted line). 
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All chains are classified into the following five types (see Fig. 5). 

Type 1: chains running from initial electrons to final electrons, 
Type 2: chains running from initial electrons to initial positrons, 
Type 3: chains running from final positrons to final electrons, 
Type 4: chains running from final positrons to initial positrons, 
Type 5: loops. 
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FIG. 5. Five types of chains. 

Let the numbers of the above five types of chains in a graph be n, , n2, n3, n4, and 
n5 , respectively. Because of (4), only one of ni , 1 < i < 4, is independent, and 
others are determined from it as follows. Choosing n, as the independent number, 
we find a possibility of the set of ni , 1 < i < 4, as 

&in G nl < %TL~~, 

n, = nel - nl , 
n3 = n;l - n, , 
n4 = nl - (n.d - 44, 

(64 

(6’4 
(64 

(64 

where 
nmin = Max[O, ~1 - rips], (74 
n mt+x = Min[m , &I. (7b) 

Setting an initial value of n, to (nmin - l), we proceed to Step 1. 

Step 1. We increase the value of n1 by 1 and determine n2 , n3 , and n4 from 
(6b), (6c), and (6d). If n, exceeds nmax (i.e., all cases are exhausted) then stop the 
computation, otherwise go to Step 2. 
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Step 2. We distribute N vertices among five types of chains. Assume that the 
ith type chains have received Ni vertices, where 

Ni > nc, 1 <i<4, (84 

N5 = a nonnegative even integer, (3 

jl Ni = N. 034 

The program assigns {N1 = N - (nz + n3 + Q), Nz = n, ,..., N4 = n4, N5 = 0} 
as the first distribution of these numbers. Succeeding sets of numbers to be assigned 
are generated by a function “proceedl.” When we succeed in generating a new 
set, we go to Step 3. If all possible sets are exhausted, we return to Step 1. The 
function proceed1 is one of the “proceed” functions used in our program, each 
of which is used to succeedingly exhaust the combinations of numbers in a set. 
We present a definition of proceed1 as a representative example, in a language 
which is intuitively easy to undertand, where N’ = N - (n, + n2 + n3 + Q), 
N,’ = Nl - n, ,..., N,‘= N4--n4,andN,‘= N5, 

proceed1 [N’; N,‘; N,‘; N,‘; N4’; N5’] = prog [ [i] 
i := 2; 

A [ifi # 5 then Ni’ := Nit + 1; 

else N5’ := N5’ + 21; 

N,’ := N’ - (N,’ + N,’ + N,’ + N;); 

[if N,’ > 0 then return [N,‘; N,‘; N3’; N4); Nil; 
else if i = 5 then return [NIL]]; 

N; := 0; 
i:= i+ 1; 

go [All. 

Each possible set (N1 , . , ., N5} satisfying (8) is thus generated only once by proceedl. 
When proceed1 returns “NIL,” we know that all possible cases are exhausted. 

Step 3. For each i, 1 < i < 4, Ni vertices are distributed among ni chains 
of type i, as follows. Let Nd,j , 1 < j < n$ , be the numbers of the vertices distri- 
buted to the chains. We impose restrictions 

2 Ns.5 = Ni 7 
i=l 

Ni.j 2 Ni.,+l 3 1. 

Pa) 

(W 
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For each i, 1 < i < 4, the program assigns {Ni,l = Ni - ni + 1, N,,z = l,..., 
Ni+ = l} as the first distribution of these numbers. Succeeding sets of numbers 
to be assigned are generated only once for each possible set by a function 
“proceedchn.” 

Step 4. The chains of type 5 (i.e., the loops) have been assigned with N5 
(an even integer) vertices in Step 2. Hence, the maximum number of loops is 
n, = N,/2. If n5 > 0, we distribute Nssl ,..., N5,ng vertices to loops l,..., n5 , 
respectively, imposing restrictions 

N5,i = an even integer, UW 

(lob) 

A function “proceedloop” successively generates each possible set {N5,1 ,..., N5,n6} 
only once. The starting set of values assigned is {Nssl = N5, N5.2 = O,..., N5,n6 = 0}, 
that is, the case with only one loop with N5 vertices. 

The steps so far are for skeleton construction. It should be noted 
program constructs each possible skeleton only once. 

that our 

3.2. Vertex Labeling and Initial Setting of e-Sets andp-Set 

We label all vertices in a skeleton constructed as above with numbers 1, 2,. . . , N, 
using the following rules: (i) All vertices in the skeleton are distinctively labeled; 
(ii) each chain is labeled with sequentially increasing numbers along its direction; 
(iii) numbers assigned to chains of type i are smaller than those assigned to chains 
of type (i + 1); (iv) numbers assigned to a chain with more vertices are smaller 
than those assigned to another chain with fewer vertices, if both are of the same 
type. 

Next, we set up the e-sets and the p-set of the skeleton labeled above, using all its 
topological properties. Since ph-lines are not yet taken into consideration, and 
since chains in the skeleton are disconnected from each other, it is clear that the 
chains of the same type with the same number of vertices are equivalent to each 
other, and that all loops are periodic with period 1 (i.e., all vertices but the base in 
every loop are quasi-bases). 

3.3. Predicate Function “Advancedp” 

One of the most important functions in our program is advancedp. It has two 
ordered sets of numbers as its arguments, and is defined as 
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advancedp [(k, , k, ,..., k,); (kI’, k,‘,..., k,‘)] 
= [if arguments are null (i.e., m = 0) then FALSE; 

else ifk, > kI’ then FALSE; 
else ifk, < k,’ then TRUE; 
else advancedp [(k2 ,..., k,); (k2’ ,..., k,‘)]], 

where ordered sets are denoted by pairs of parentheses. In our program, this 
function is used to define an ordering among ordered sets of numbers. Similarly, 
an ordering of ordered families of ordered sets of numbers are defined by a function 
“mltadvancedp”: 

mltadvancedp [(K1 , K, ,.,., K,); (K,‘, &‘,..., K,‘)] 
= [if arguments are null (i.e., m = 0) then FALSE; 

else if advancedp[& ; K,‘] = TRUE then TRUE; 
else if advancedp[K,‘; K1] = TRUE then FALSE; 
else mltadvancedp[(& ,..., K,); (K,‘,..., K,‘)]]. 

3.4. Connection of ph-Lines 

In order to connect &h ph-lines from the initial state, for example, we must 
select nph numbers out of vln’s, 1, 2 ,..., and N. To perform this, we use a function 
“pickanddelete,” which has two ordered sets of positive integers as its arguments 
and works as follows: 

pickanddelete [(ml , m2 ,... m,); (nI , n2 ,..., nk)] = prog [[i; x;p; r] 
i:= 1; p := (nothing); r := (n, , n2 ,..., n,); 

A [if i > j then return [p; r]]; 
x := m&h element of r; 
append x to p as the last element; 
delete x from r; 
i:= i+ 1; 
go [All, 

here j < k and 1 < m, < k - s + 1. 

Step 5. In this step, all ph-lines from the initial state are connected, if nph # 0, 
to the skeleton constructed so far. Let an ordered set of integers (m, , m, ,..., rnnPh) 
satisfy 

1 <mi<mi+l<N-nph+l. (11) 
Connect the nph ph-lines to vertices labeled with numbers belonging to the first 
set returned by pickanddelete[(m, , m2 ,..., mnPh); (1,2,..., N)]. Note that, because 
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of (1 l), numbers in the first set returned are in the increasing order. Starting from 
set (1, I,..., 
only once. 

I), a function “proceed3” generates each possible set (m, , m, ,..., mnp,) 

We note that, when there exists some equivalent vertices in a skeleton, the above 
method of the external ph-line connection may generate many topologically 
identical subgraphs (Fig. 6 illustrates this fact). Since chains in a resulting subgraph 
are still disconnected from each other, we can easily eliminate such unnecessarily 
duplicated subgraphs as follows. First, when the p-set of a subgraph is not null, 
we apply the following test to each loop in the set. 

Cl 8g1 
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1 1, 
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9 

2; 5 
: 
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C 

FIG. 6. Allowed and forbidden connections of external ph-lines. Fig. 6a is a skeleton con- 
taining two equivalent chains and one periodic loop. Figs. 6b and 6c are subgraphs arising from 
6a by the connections of external ph-lines. They are topologically the same. Owing to Tests A and 
B, 6b is allowed but 6c is forbidden. 

Test A. For each vertex in a given periodic loop we assign a number which is 
either 1 if the vertex is connected with a ph-line, or 0 otherwise. Let the loop contain 
k vertices and be of period p. Suppose (x1 , x2 ,..., xk) is the ordered set of numbers 
thus assigned, where xi is for the vertex of height j. If advancedp[(x, , x2 ,..., x,); 
cxip+l ,-*., xk , x1 ,..., xi,)] = TRUE for any value of i, 1 < i < (k/p) - 1, then 
the subgraph is eliminated, otherwise the period of the loop is replaced by the 
period of (x1 , x2 ,..., x,), which is evaluated as follows. 

period1 [(x1 , x2 ,..., J-&PI = twit HY; 41 
q:=p; 

A Y := (%+I, &+z ,..., xk, XI P..., X,); 

WV = (Xl 7 x, ,..., x,) then return [q]]; 

q:= q+p; 
[if q > (k + 1)/2 then return [k]; 
else go [A]]]. 

If the period becomes k, we delete the loop from the p-set. 
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Next, when the e-sets of the subgraph are not null, we apply the following test 
to each e-set: 

Test B. For each vertex in each chain in a given e-set, we assign a number 
which is either 1 if the vertex is connected with a ph-line, or 0 otherwise. Let the 
e-set contain I chains c1 , c2 ,..., c~, each of which contains k vertices. Then we have 
I ordered sets y, , y, ,..., yI , each of which contains k numbers thus assigned. Let 
the ordering of c1 , c2 ,..., c1 be in accordance with the preferred order. If 
advancedpb, ; yi+,] = TRUE for any value of i, 1 < i < (I - l), then the sub- 
graph is eliminated, otherwise c1 , c2 ,. . . , cI are grouped into smaller e-sets according 
to the following criterion. 

[if advancedp[ yi ; ~~1 = advancedp[ yj ; vi] = FALSE 
then ci and c3 are equivalent to each other; 

eZse ci and cj are not equivalent to each other]. 

Step 6. All external ph-lines to the final state are connected, if & # 0, from 
ph-line vacant vertices of the subgraph constructed so far. The method is the same 
as that in Step 5, except that the first argument of pickanddelete is an ordered set 
of integers (m,‘, m2’,..., mQ satisfying 

1 < T?li’ < m;+l < N - np,, - $,h + 1, (12) 

and that its second argument is the second set returned by pickanddelete in Step 5. 
After this step, just as after Step 5, Tests A and B are applied again to the sub- 

graph to check this ph-line connection. Because of conditions (11) and (12) and 
Tests A and B, every surviving subgraph at this stage is topologically distinct from 
each other. Furthermore, equivalent chains in a graph are such that they are not 
only of the same type with the same number of vertices, but also topologically 
the same w.r.t. the connections of external ph-lines. 

The final step of the graph construction is to connect the internal ph-lines to 
yet ph-line vacant vertices. Let vhr’s of such vertices be r, , r2 ,..., rzm (2m = N - 
nph - &), and let Ti < Ti+l . 

Step 7. Let an ordered set of integers (ql , q2 ,..., q,,J satisfy 

i+1<qi<2m-i+l. (13) 

Let the first and the second sets returned by pickanddelete[(q, , q2 ,..., q,,J; 
(rl , r2 ,..-, rzm)] be (sl, s2 ,..., s,) and (t, , t, ,..., t,), respectively. For each i, 
1 < i < m, join each pair of vertices having vln’s si and ti by an internal ph-line. 
We call this procedure the pairing of vertices. Starting from set (2, 3,..., m + l), 
a function “proceed4” generates each possible set (ql , q2 ,..., q& only once. 
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We can see that si < xi+1 , ti < ti+l , and s, > ti for all possible i, hence if sets 
(41 3 q2 9---> 44 and h’, q21,..., qnz’) are different, then the resulting pairings are 
different. Therefore all different pairings are accomplished, only once for each, 
because (13) tells us that the number of sets to be generated by proceed4 
is (2m - 1) ! !, which is equal to the number of all different pairings of 2m different 
vertices. This step may, however, produce topologically identical graphs many 
times in general, because some vertices may be equivalent. 

4. GRAPH ELIMINATION ALGORITHM 

Most procedures in this section will be described without detailed definitions, 
which the reader can grasp by referring to Tests A and B described in subsection 3.4. 
First of all, it should be noted that no graphs, except the one which is to be tested, 
are stored in the memory at one time. 

4.1. Elimination of Graphs Unused in Physics 

The graphs unused in physics are: (i) disconnected graphs; (ii) graphs containing 
electron and/or photon self-energy corrections to external lines; and (iii) improper 
self-energy graphs. Since their elimination is a mathematically simple procedure, 
we omit the discussion. 

4.2. Strategy for Graph Elimination 

We first note that the graphs to be tested are only those that contain nonnull 
e-sets and/or a p-set. The reason is as follows: Consider a subgraph composed of 
a skeleton and all external ph-lines. We have shown that all such subgraphs 
produced by our program are topologically distinct from each other; hence, so 
are any two Feynman graphs respectively constructed by two such subgraphs. 
Suppose that such a subgraph does not contain any nonnull e-sets and/or a p-set, 
then all its vertices are topologically distinct from each other. Thus, all Feynman 
graphs constructed from the subgraph by the internal ph-line connections are also 
topologically distinct from each other. Note that the e-sets and the p-sets charac- 
terizing the subgraph are not altered in Step 7. Figure 7 shows graphs which are 
topologically identical but different in the vln configurations. Since topologically 
identical graphs here are due to different internal ph-line connections, it is seen 
that vln configurations of mutually identical graphs are related to each other in one 
or both of the following ways: (i) exchange of some equivalent chains (for example, 
chains (1) and (2), or loops (9 10) and (11 12) in Fig. 7) and (ii) cyclic relabeling of 
all vln’s of some periodic loops by multiples of their respective periods (for example, 
the permutation (3 -+ 6, 4 -+ 7, 5 + 8, 6 ---f 3, 7 + 4, 8 -+ 5) in Fig. 7). 
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3 
1 -*I 

6 
---. 

FIG. 7. Graphs which are topologically identical but different in vln configurations. 

Next, we note that all chains or all vertices in loops of a graph produced by our 
program can be uniquely ordered according to the preferred order, which is 
common to all topologically equivalent graphs. We further note that chains or 
vertices which are mutually equivalent w.r.t. an equivalence criterion can be ordered 
if they are not equivalent w.r.t. another equivalence criterion; that is, some 
equivalent chains or vertices of a graph can be ordered according to the graph’s 
topology. We call this the topological ordering. Of course, chains or vertices in 
a completely symmetric graph cannot be completely ordered according to the 
graph’s topology only. However, a topological ordering which is relative to the 
preferred order can actually be determined, as we shall show later. Therefore, by 
eliminating those graphs which contain chains or vertices whose topological 
ordering relative to the preferred order is not consistent with the preferred order, 
we can eliminate all unnecessarily duplicated graphs. By representing the topo- 
logical properties of chains (or blocks) as ordered sets of numbers (or ordered 
families of such sets), we can make use of function advancedp (or mltadvancedp) 
to order them. Note that this strategy has already been used in Tests A and B. 

Thus our task is to investigate the topological properties of a given graph. 
Since the investigation will be performed through a number of steps, a test for 
chains in an e-set is typically as follows. 

Test E. Order all chains in the e-set by examining the equivalence of them 
w.r.t. a given criterion. If the result is not consistent with the preferred order, 
then return “NO,” otherwise separate the e-set into smaller e-sets according to the 
equivalence criterion just used. 
This test is applied to every e-set. Similarly, a test for a periodic loop is typically 
as follows. 

Test P. Determine the “ranking” of the base and quasi-bases of the loop by 
examining their equivalence w.r.t. a given criterion. If the base does not take the 
highest ranking, then return “NO.” Otherwise redefine the period according to the 
equivalence criterion just used. If the loop turns out to be nonperiodic, delete it 
from the p-set. 
This test is applied to every loop in the p-set. It should be noted that in order to 
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determine the ranking of a quasi-base, we must treat the quasi-base as if it were 
the base of the loop. The elimination procedure for a graph terminates when some 
test answers “NO” (then the graph is eliminated), or both the e-sets and the p-set 
become null (then the graph is printed out). Figure 8 is a flow diagram showing all 
of the elimination steps. 

& step 7 .-.-.-. elimination or print cut 

ri 

I 
L ---_----- tesc 10 --.-.-.-J 

1 investigation of 

inner-chain topology 

investigation of 

inter-chain topology 

block formation & 

~investigation of 

inner-block topology 

investigation of 

inter-block topology 

FIG. 8. Graph elimination steps. If sollle test answers “NO,” the graph is eliminated (chained 
line). If botb the e-sets and the p-set become null, the graph is printed out (chained line). If the 
e-sets and/or the p-set change, we go back to a younger test (dotted line). Otherwise, we go to 
the next test (solid line). 
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For convenience we classify every chain and vertex as follows. 

Class 1: chain or vertex belonging to neither an e-set nor the p-set, 
Class 2: chain or vertex belonging to the p-set but not to any e-set, 
Class 3: chain or vertex belonging to an e-set but not to the p-set, 
Class 4: chain or vertex belonging to both an e-set and the p-set. 

4.3. Elimination Algorithm, Part I 

The tests to be described here are those which can be applied to each chain 
without considering how other chains are connected. 

CRITERION 1. Let two equivalent vertices in a graph be A and B, and their 
ph-neighbors be A’ and B’, respectively. If one of the following two conditions is 
satisfied, then A and B are distinguishable: (i) A and A’ are in the same chain but 
B and B’ are not; (ii) not only A and A’ but also B and B’ belong to their respective 
chains, but the length between A and A’ is different from that between B and B’. 
Hence two equivalent chains, or the base and a quasi-base in a periodic loop, can 
be ordered if one of the above conditions holds for at least one pair of their 
equivalent vertices. 

Tests 1 E and 1 P. Apply Tests E and P to the e-sets and the p-set, respectively, 
w.r.t. the equivalence criterion 1. 

After these tests, equivalent chains in each surviving graph will have the same 
inner-chain topology (cf. Fig. 9). 

FIG. 9. Chains and loops distinguishable by Tests 1E and 1P. 

CRITERION 2. Two equivalent vertices are distinguishable, and hence can be 
ordered, if their ph-neighbors satisfy one of the following conditions: (i) they do 
not belong to the same class; (ii) they belong to class 1; (iii) they are in class 2 and 
they belong to different loops; (iv) they are both in class 3 or in class 4, and they 
belong to different e-sets. 

Tests 2E and 2P. Apply Tests E and P to the e-sets and the p-set, respectively, 
w.r.t. the equivalence criterion 2. 
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During these tests the graphs containing vertices whose ph-neighbors are in 
class 1 are either eliminated or printed out. Furthermore, ph-neighbors of any 
two equivalent vertices in each surviving graph belong either to the same loop if 
they are in class 2, or to the same e-set otherwise. 

CRITERION 3. Two equivalent vertices are distinguishable, and hence can be 
ordered, if their ph-neighbors satisfy one of the following two conditions. (i) They 
belong to class 2 or to class 4, and their quasi-heights are different; (ii) they belong 
to class 3 and their heights are different. 

Tests 3E and 3P. Apply Tests E and P to the e-sets and the p-set, respectively, 
w.r.t. the equivalence criterion 3. 

After these tests the ph-neighbors of any two equivalent vertices in every 
surviving graph have the same quasi-height if they are in class 2 or in class 4, or 
have the same height if they are in class 3. 

Since two or more vertices in a periodic loop are equivalent to each other, the 
number of ph-lines adjoined to both of two given loops in an e-sets may not be 
the same for all such similar pairs. Figure 10 shows an example. Note that this 
case arises if and only if loops are in class 4. 

FIG. 10. Five loops A, B, C, D, and E are mutually equivalent w.r.t. criteria 1, 2, and 3, but 
A is apparently distinct from others. 

CRITERION 4. Take all possible pairs of loops belonging to class 4. For each pair, 
obtain the number of ph-lines adjoined to both loops. Suppose we have n loops 
belonging to class 4, then each loop is assigned with a set of (n - 1) such numbers 
(possibly with element duplications). If any two equivalent loops are assigned with 
different sets, then they are distinguishable, and hence can be ordered. 

Test 4. Apply Test E to the e-sets containing loops belonging to class 4 w.r.t. 
the equivalence criterion 4. 
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4.4. Elimination Algorithm, Part II 
To make a further investigation of a graph, we must consider more than one 

chain simultaneously. Our approach here is to separate the p-set and each of the 
e-sets into blocks. Figure 11 illustrates this aptly. 

RG. 11. Chains (1 2), (3 4), (5 6), and (7 8) are completely equivalent if we observe them 
separately, but set ((1 2), (3 4)} is clearly distinct from set ((1 2), (5 6)). 

We first separate the p-set into blocks. What we must carry out at this stage are 
(i) to examine how loops in the p-set are grouped into blocks, and (ii) to examine 
how they are connected within each block. The latter becomes trivial if the block 
is composed of a single loop. We can easily carry out the former with a suitably 
chosen criterion (and this is our Test 5.1), and the latter by treating each block as 
a simpler Feynman graph (and this is Test 5.3). However, we let Test 5.3 to be 
preceded by the following Test 5.2. 

Test 5.2. For each loop in a given block, change cyclically its vln configuration 
by a multiple (including zero) of its period so that some quasi-base of the relabeled 
loop comes to the base position of the original one. Compare the block thus 
constructed with the original one by examining heights of ph-neighbors of all 
their vertices. Repeat this procedure until the sets of numbers characterizing the 
former are found to be more “advanced” than those for the latter (then return 
“NO”), or until all possible permutations of the vln configurations of the block 
are exhausted. Figure 12 illustrates this in some detail. 

This test allows us to regard all loops in each block as nonperiodic so far as their 
inner-block vln configurations are concerned, which makes Test 5.3 fairly simple. 
This test is an example that shows a ranking, relative to the preferred order, of 
equivalent vertices can be determined even in a symmetric block. 

We next separate each e-set containing nonperiodic chains into blocks. However, 
we need not separate the e-sets containing periodic loops because their constituents 
are already grouped into blocks. We again examine how chains are grouped into 
blocks (Test 6.1) and how they are connected within each block (Tests 6.2 and 6.3) 
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(cf. Fig. 13). After these tests, a graph can be regarded as being composed of 
blocks only. We note that blocks having different inner-block topologies can be 
ordered. If the result is not consistent with the preferred order of blocks, we elimi- 
nate the graph (Tests 5.4 and 6.4). Furthermore, since some blocks of a graph 
may have the same inner-block topology, sets of equivalent blocks are defined. 

a b 

FIG. 12. Blocks composed of periodic loops. Loops in these blocks are of period 1 up to Test 
4 and are indistinguishable. According to Test 5.2, 12a and 12b are characterized by families of 
sets of numbers ((1 1) (1 1) (2 2) (2 2)) and ((2 2) (2 1) (1 2) (1 l)), respectively, where the numbers 
represent the heights of ph-neighbors of corresponding vertices in ((1 2) (3 4) (5 6) (7 8)). We can 
distinguish them by applying function mltadvancedp to these families of sets. 

.’ .’ 

13a 13b 

FIG. 13. Blocks composed of nonperiodic chains. Block 13a is allowed by Tests 6.2 and 6.3, 
but 13b is not. 

Now, we proceed to study the topology which has not yet been investigated, 
i.e., the inter-block topology. Figure 14 shows an example of a graph to be 
investigated next. We readily observe that all blocks in it are “rotationally sym- 
metric.” This is a concept which is somwhat similar to that of periodic loops. In 
fact, rotationally symmetric blocks can be similarly treated as periodic loops under 
a suitable redefinition of terms used for loops. Here we give a definition of terms 
for such a block composed of nonperiodic chains c1 , c2 ,..., c, , as an example. 
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FIG. 14. An example of graph to be investigated further. The graph contains two e-sets, 
each of which contains two periodic blocks. 

DEFINITION. The block (cl, c2 ,..., c,J is periodic w.r.t. a given criterion if 
ct , ci+D, ci+29 ,..., ct+(4 , i = 1, L., p, 1 < p < n/2, are equivalent to each 
other w.r.t. the criterion but cj and clc , 1 < j # k < p, are not. The number p 
is called the period of the block. Let c1 contain the base of this block, then quasi- 
buses of the block are bases of c~+~, c29+1 ,..., c(,-,)+~ . The length from ci to cj 
is the number (j - i) modulo n. The height and the quasi-height of ci in the block 
are number i and i modulo p, respectively. In this way a set of periodic blocks is 
defined (cf. Fig. 15). 

a b C 
RG. 15. Examples of periodic blocks. Blocks 15a and 15~ are of period 2 but Mb is of period 4. 

A graph is now characterized by the e-sets and the p-set defined for blocks. 
Accordingly, the e-sets and the p-set defined for chains are discarded. Then, the 
situation is quite similar to the case which we have encountered before with equiv- 
alent chains and periodic loops. This fact is an important result of forming blocks. 
Hence, applications are made, to the graph, of Tests 7 to 9, which are completely 
similar to Tests 2E and 2P, Tests 3E and 3P, and Tests 5.1 to 5.4, respectively. 
Here we only explain the necessity of Test 9. We may observe that some of the 
periodic blocks may be directly connected (see Fig. 14). If that is the case, we must 
again separate the p-set into “blocks” and apply to them a procedure similar to 
Test 5. The procedure corresponding to Test 6 is unnecessary because blocks in 

581/22/z-6 
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each e-set are, by definition, not directly connected with each other. After Test 9, 
blocks in the p-set are not directly connected. 

4.5. Elimination Algorithm, Part III 

So far, we have examined all inner-block topologies and all inter-block topologies 
between any two blocks. All graphs to be further investigated may be classified 
as follows. 

Type 1: graphs composed of only nonperiodic equivalent blocks (cf. 
Fig. 16a), 

Type 2: graphs composed of a periodic block 
blocks (cf. Fig. 16b), 

and nonperiodic equivalent 

Type 3: graphs composed of periodic blocks being connected with each 
other through nonperiodic equivalent blocks (cf. Fig. 16~). 

a b C 

FIG. 16. Three examples of graphs to be tested by Test 10, where we denote equivalent blocks 
and periodic blocks by, respectively, squares and circles schematically. 

We discuss each type of graph separately, and show that the ordering of equiv- 
alent blocks and the ranking of quasi-bases or bases, relative to the preferred order, 
can be completely determined. To make clear the following discussions, we use 
a term b-block to denote a block constructed from a set of blocks. 

Graphs of the first type: Since every vertex is nonequivalent in each nonperiodic 
block, freedom of the vln configurations left for these graphs is restricted to that 
to which blocks equivalent vertices are connected. Suppose the jth e-set is 
W,, B,,,..., Bi,}, where the vln of the base of B,i is less than that of Bfi+l. If the 
ph-neighbor of a vertex belongs to B,, we assign number i to this vertex. Then a 
graph can be completely characterized by an ordered family of ordered sets of 
numbers thus assigned to all of its vertices. 
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Test. 10.1. Exchange the vln’s of all pairwise equivalent vertices in suitably 
chosen two equivalent blocks. Compare the graph thus constructed with the original 
one by using the sets of numbers described above. Repeat this block permutation 
procedure until the sets of numbers characterizing the former graph are found 
to be more “advanced” than those for the latter (then return “NO”), or until all 
possible such permutations are exhausted (then output the graph). 
It is clear that Test 10.1 eliminates all of the mutually equivalent graphs but one. 

Graphs of the second type: We group all nonperiodic blocks into b-blocks 
according to their connections. We examine how blocks are grouped into b-blocks 
and how they are connected within each b-block. The former examination is made 
by Test 6.1. The latter is made by Test 10.1, since each b-block is composed of non- 
periodic equivalent blocks. If we find that some b-blocks are topologically different, 
we go back to Test 7 by redefining the e-sets. Otherwise we examine the connections 
of b-blocks to the periodic block. This can be performed as follows. 

Test 10.2. Find all those vertices of a b-block such that their ph-neighbors 
belong to the periodic block. Let {u 1 , c 2 ,..., u,} be such vertices, where the vln 
of vi is less than the vln of vi+1 . Let the ph-neighbor of vi be wi . For all vi, obtain 
the length from w1 to wi . Then the connection of the b-block to the periodic block 
can now be completely characterized by an ordered set of numbers thus obtained. 
Using these sets of numbers, order the b-blocks. If the result is not consistent with 
the preferred order, then return “NO.” 

If we find that some connections are topologically different, we go back to 
Test 7 by redefining the e-sets. Otherwise the graph must be completely symmetric. 
Freedom of the vln cotigurations left for such topologically equivalent graphs is 
only that in which relative order equivalent b-blocks are connected to the periodic 
block. To remove this freedom, we fix the ranking of quasi-bases and the base 
of the periodic block (i.e., we set the p-set null). Then equivalent b-blocks can be 
ordered at once (Test 10.3). 

Graphs of the third type: We group all nonperiodic blocks into b-blocks 
according to their connections, and examine how they are grouped into b-blocks, 
how they are connected within each b-block, and how b-blocks are connected with 
each periodic block, just as was described for the second type graphs. If we find 
during these procedures that mutually equivalent blocks belong, respectively, to 
two or more b-blocks which are topologically different, we go back to Test 7 by 
redefining the e-sets. Next, we classify the b-blocks into two classes: b-blocks in 
the first class connected with only one periodic block, and others in the second 
class. We construct periodic b-blocks from all periodic blocks and b-blocks of 
the first class according to their connections. Since each of these periodic b-blocks 
is completely symmetric, all equivalent b-blocks in it can be ordered by Test 10.3. 
After this procedure, we can discard the first class b-blocks. Then, the graphs 
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finally surviving are composed of periodic b-blocks being connected with each 
other directly or through nonperiodic equivalent b-blocks. The ranking, relative 
to the preferred order, of quasi-bases and bases of periodic b-blocks can be deter- 
mined by a procedure similar to Test 5.2 (this is Test 10.4); in fact, if we identify 
each of the nonperiodic b-blocks as a point, the graphs become quite similar to 
the blocks composed of only periodic loops. After this procedure, we can discard 
the p-set, then we can order the nonperiodic equivalent b-blocks at once by 
Test 10.3. By comparing the resulting ordering with the preferred order, we can 
select only one graph out of the all topologically equivalent graphs. 

This completes the proof that we can eliminate all unnecessarily duplicated 
graphs without referring to other graphs. 

5. CONCLUDING REMARKS AND APPLICATIONS 

Our program consists of two parts. The first constructs graphs, and the second 
eliminates unnecessary graphs. The algorithm for the former is fairly efficient 
(i.e., multiplicity of topologically identical graphs to be constructed in memory 
is fairly small), and is such that all generated graphs are well classified (i.e., graphs 
having the same skeleton and the same external ph-line connections are sequentially 
generated). The algorithm for the latter is devised so that we need not store the 
generated graphs to cope with the cases where a large number of graphs are 
involved. A weakness of our program is that it is applicable only to the QED 
interaction. 

We mention here the applicability of our idea of the graph elimination to other 
types of interactions. Our elimination algorithm for QED Feynman graphs relies 
essentially on the fact that all skeletons to be constructed are topologically distinct 
from each other, and that all equivalent vertices can be completely classified (by 
equivalent chains and periodic loops). If it is the case for graphs describing other 
interactions, which seems to be very reasonable, then the graph elimination can be 
similarly performed as for QED graphs. However, we usually encounter many 
difficulties in general. That is: 

(i) The concept of skeleton is not so simple in general. 
(ii) If chains are not directed, we must consider the chain reversal symmetry. 

(iii) If there are many kinds of lines, we must consider many kinds of chains 
and e-sets. 

(iv) If more than three lines or three lines of the same kind are adjoined 
to one vertex, classification of subgraphs will surely be complicated. We will 
have to introduce not only the terms “equivalent” and “periodic,” but also the 
terms that concern the permutation of vertices. 
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TABLE I 

Results for Several Interesting Processes in Physics” 
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Graph type 

Vertex graph 
&I = nph = nel - ’ -1 

Vacuum graph 
nel = . . . zz nib = 0 

Photon self-energy graph 
, 

Tfph = nph = 1 

Electron self-energy graph 
n,1 = n;, = 1 

Photon-photon scattering 
, 

?tph = nph = 2 

Photon-electron scattering 
?tph = &l = t(,h = ?& = 1 

Electron-electron scattering 
?&I = ne, - ’ -2 

Electron-positron scattering 
ne1 = npa = ne, ’ =n’ El 

P8 

Four-electron scattering 
nel = nel - ’ -4 

5 7 2 2” 
7 72 4 21” 
9 891 7 5’51” 

11 12672 12 lh50 

4 3 2 6” 
6 8 3 24” 
8 39 5 1’38” 

4 3 2 1.1” 
6 18 2 3.7” 
8 153 4 34” 

10 1638 6 8’33” 

4 3 2 0.7” 
6 18 4 3.9” 
8 153 7 54” 

4 2 1 4.6” 
6 16 1 10.3” 
8 195 3 1’13” 

4 8 1 2” 
6 74 3 15” 
8 888 6 3’17” 

4 4 3 7” 
6 28 7 20” 
8 303 14 3’19” 

4 10 8 2.2” 
6 94 20 20.5” 
8 1136 41 5’46” 

6 4 3 10.1” 
8 90 9 2’15” 

a The four-electron scattering is supplemented because it is of interest from the graph elimina- 
tion viewpoint, though it is seldom used in physics. N,,, , Ngraph, Nsubg, and T are, respectively, 
the order of the corresponding graphs, the number of generated graphs = the number of all 
topologically different graphs, the number of all topologically different skeletons of the output 
graphs, and the total computer execution time excluding the initialization time. 
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Due to the reasons explained above, a generalization of our approach to more 
complicated interactions, for example, interactions in non-Abelian gauge field 
theories, will be very difficult. For such cases, however, we propose the following 
strategy. Find an efficient algorithm which constructs graphs in well-defined 
classes, then eliminate unnecessary graphs by applying the comparison method 
to each class of graphs. By specifying the type of interaction, we should be able 
to find such a graph construction algorithm, as we have done for the QED inter- 
action. Then, the number of graphs to be stored in memory for comparison will 
be substantially reduced, because the graphs classified in the same set have to be 
stored at one time. In this way the memory requirement should be largely relaxed. 

Table I shows some results of the graph generation for several interesting 
processes [3]. The computations were carried out on a FACOM 230-75 computer 
(word length = 36 bits, fixed point multiplication time = 0.45 psec, and Gibson 
mix time = 0.207 psec). The free storage used is 44K words, about half of which 
were occupied by the program itself. Our results may be compared with those of 
Perrottet [2] in our favor. Using a FORTRAN program, he generated graphs up 
to seventh order for several types of interactions. He employed the comparison 
method to eliminate the duplicated graphs. Considering that our LISP interpreter 
system [4] is written in FORTRAN, we may say our program is quite efficient. 
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